The DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) has therapeutic value for the treatment of cancer. However, the mechanism by which 5-Aza-CdR induces antineoplastic activity is not clear. The efficacy of 5-Aza-CdR on the contribution of gene reactivation by demethylation and enzyme-DNA adduct formation is an important unresolved question. The aim of this study was to explore the mechanism of the effect of 5-Aza-CdR on human gastric cancer growth. Human BGC-823 cells were treated with different concentrations of 5-Aza-CdR for different durations. Cell viability, DNA damage and gene expression were determined. The results showed that 5-Aza-CdR at low concentrations induced inhibition of gastric cancer BGC-823 cell proliferation as well as increased apoptosis caused by DNA damage. For the first time, we demonstrated that 5-Aza-CdR-induced cytotoxicity against BGC-823 cells was predominantly regulated via upregulation of DNA methyltransferase 1, 3a and partially via reactivation of RUNX3, which was independent of p53 status and its ability to activate p21Waf1/Cip1 expression. To our knowledge, this is the first demonstration of p53-independent 5-Aza-CdR action on DNA methyltransferases and demethylation. These results strongly provide the preclinical rationale for the clinical evaluation of 5-Aza-CdR to improve patient outcome in gastric cancer.
5-Aza-2'-deoxycytidine induces cytotoxicity in BGC-823 cells via DNA methyltransferase 1 and 3a independent of p53 status
- 期刊:ONCOLOGY REPORTS
- 阅读原文